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Abstract—To minimize the amount of computation, traditional
approaches to calculating the distance transform (DT) on a
discrete volume propagate distance values in a local neighbor-
hood. This results in recursive dependencies across the volume,
requiring the DT to be calculated for all points in the domain en
mass and stored as static values in memory. On the other hand,
the ability to calculate the distance transform point-wise not only
offers the prospect of efficient memory usage and scalability, but
also a high degree of flexibility in accommodating the unique
requirements of new application domains. However, among the
current DT algorithms, the computationally intensive brute-force
algorithm is the only one that allows point-wise computation.
We demonstrate that the by decomposing it into a map and
a reduction pattern on the massively parallel architecture of a
modern Graphics Processing Unit (GPU), the brute-force distance
transform algorithm achieves the threefold goals of memory
efficiency, flexibility, and performance. We discuss a memory
constrained implementation in the CUDA parallel programming
model. The flexibility of point-wise computation at runtime is
demonstrated by presenting an approximate and an anisotropic
variant of the standard distance transform algorithm, and using
these variants for the rendering of a CT scan image. Our
approach allows the distance transform to be calculated for
1024 query points and up to 16 million feature points in 141.25
milliseconds while allowing direct control over the memory
working-set size. These results demonstrate the potential of point-
wise computation of the DT at runtime and the need for future
algorithms to incorporate this capability.
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I. INTRODUCTION

If d is the distance function on a metric space M , and S
a subset of M , then the distance transform is a function T :
M → R defined as

T (q) = {d(q, s) | d(q, s) ≤ d(q, s′) ∀s′ ∈ S}

Hence, for each q ∈ M , T provides the distance to the
nearest element of S. Most often, M is the n-dimensional
Euclidean space and d is the Minkowski distance metric Lp =
(
∑n

i=1 |si − qi|p)1/p between points s = (s1, s2, ..., sn) and
q = (q1, q2, ..., qn). L1, L2 and L∞ give the commonly used
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Manhattan, Euclidean and Chebyshev (chessboard) distances,
respectively.

The distance transform, and the closely related operation of
Voronoi partitioning, find application in a variety of subject
areas, ranging from computer vision, data analysis and com-
putational geometry to artificial intelligence and robotics. In
computer graphics, the distance transform is used to speed up
the raytracing of volumetric models [1] and Voronoi diagrams
form the basis of many nature-like procedural textures [2]. For
a more comprehensive list of applications see [3] and [4].

The brute-force approach to calculating the distance trans-
form (DT) for a set of query points Q ⊆ M compares each
q ∈ Q to every single s ∈ S and runs in O(|Q||S|) time.
Current serial and parallel algorithms seek to improve on this
by performing a local search in a neighborhood N around q
and propagating known distance values through the domain
M [3], [4]. Apart from the fact that the Euclidean distance
on a discrete lattice is not a local property and evaluating
it as such yields inaccurate results [5], implementations of
said algorithms on modern Graphics Processing Units (GPUs)
suffer on two additional fronts. Firstly, propagation of dis-
tances to neighbors imposes an order on the sequence of
operations, requiring at least part of the computation to be
serialized and limiting the amount of parallelism that can
be exploited. This impairs the scalability of the algorithm
to processors with a very large number of cores. Secondly,
since T cannot be calculated for a single point q without first
calculating T (q′) ∀ q′ ∈ N , the algorithms cannot operate at a
granularity finer than the whole domain. Hence, in the interest
of efficiency, the distance values for all q ∈M are calculated
en masse and stored in memory, even though a large majority
may never be queried (|Q| � |M |). If M ⊂ Z3, and assuming
single precision floating point numbers, storing the DT for a
512 × 512 × 512 volume requires an impractical 512 MB of
limited global GPU memory. For a 1024×1024×1024 volume,
the requirement goes up to four gigabytes.

While an asymptotic running time of O(|Q||S|) makes the
brute-force approach ill-suited to a serial implementation, the
algorithm does offer three advantages over existing distance
transform algorithms:

1) It offers a very significant degree of task and sub-



task level parallelism: not only can T (q) be calculated
independently for each query point q, but the subtask of
finding d(q, s)∀s ∈ S is also highly parallel in nature.
According to Amdahl’s Law, this implies very strong
parallel scalability.

2) Calculated results are guaranteed to be exact. This is not
necessarily true for algorithms which treat the Euclidean
distance metric as a local property.

3) Since T (q) is no longer dependent on a neighborhood
N around q, the DT can be calculated at the granularity
of a single query point.

The parallelism inherent to the brute-force algorithm offers
great potential for exploitation by the large number of process-
ing cores of a modern GPU. Moreover, if sufficient speedup is
achieved, the calculation of T (q) can be deferred until runtime,
obviating the storage of any precomputed data. Runtime com-
putation also offers flexibility in tuning the distance transform
to the specific requirements of each application area: the size
of S may shrink or expand to accommodate dynamic systems;
time-critical applications may choose to consider only a subset
of S depending on operational constraints.

Therefore, the objective of this paper is to demonstrate
the viability and utility of calculating the distance transform
pointwise at runtime using the brute force algorithm on a
modern GPU.

Henceforth, the terms sites and feature points are used
interchangeably to refer to elements of the set S, whereas the
elements of Q are called query points. While the following
discussion assumes both S and Q to be subsets of the three-
dimensional Euclidean space, the findings may be extended to
any metric-space M .

Original Contribution: The novel contribution of our work
is as follows:

1) The brute-force algorithm is decomposed into a map and
a reduction pattern to enable space-efficient pointwise
computation of the distance transform at run-time on a
GPU. An implementation of the algorithm in the CUDA
parallel programming model is presented.

2) An approximate variant of the algorithm that allows
accuracy of results to be traded for speed of computation
is presented.

3) The flexibility provided by pointwise computation is
demonstrated by extending the original kernel to cal-
culate an anisotropic distance transform.

Organization: Section II presents a brief survey of the
existing work on distance transforms. The CUDA imple-
mentation of our algorithm, along with its approximate and
anisotropic variants, is discussed in Section III. Sections V
and VI respectively describe the setup and the results of our
experiments as well as the application of the abovementioned
variants. A concluding section sums up our findings.

II. RELATED WORK

The work of Rosenfield and Pfaltz [6] is among the earliest
to propose the restriction of the global distance minimization

operation to a local neighborhood. Their algorithm is the first
example of a raster-scanning DT algorithm and uses a Von
Neumann neighborhood to calculate the Manhattan distance
for each pixel in two passes over a digital image. Other
neighborhoods may be used and each neighbor’s contribution
weighed to better approximate the Euclidean distance metric
[7]–[9]. The choice and weight of neighbors is commonly
represented as a mask centered on the pixel under considera-
tion. Since each pass propagates only an approximation of the
Euclidean metric, errors tend to accumulate with distance and
over several passes. In addition, the value of each pixel may
be updated more than once [3] requiring multiple reads and
writes. The former shortcoming is remedied by vector propa-
gation schemes [10], [11] which propagate a vector to the near-
est site rather than the distance value. However, the increased
accuracy comes at the cost of a larger memory footprint as
a single distance value is replaced by the n coordinates of
an n-dimensional vector. Moreover, the dependency between
consecutive passes, present in all raster-scanning algorithms,
limits parallelism. Techniques that scan rows and columns
independently seek to overcome this deficiency. Ragnemalm
[11] presents a modified, three dimensional version of the
original vector masks of Danielsson that allows the x, y and
z axes to be scanned in parallel during each pass, as do
Schneider et al. [12] who also provide a GPU implementation.
The algorithm of Cao et al. [13] uses the geometric properties
of Voronoi sites to combine the results of scans along a single
axis on a GPU. It should be noted that operations along the
columns of matrices (images) stored in row-major order leads
to a large number of uncoalesced memory accesses, thereby,
significantly degrading performance.

Ordered propagation distance transform algorithms transmit
distances along a wavefront originating at the feature elements
[5]. These algorithms are similar in nature to Djikstra’s short-
est path algorithm for graphs and the Fast Marching Method
for solving the Eikonal equation [14], [15]. Accordingly,
Lotufo et al. [16] treat the calculation of the distance transform
as a shortest path forest problem and present two algorithms
based on Djikstra’s. Jones et al. [4] provide a survey of Fast
Marching Methods applied to the distance transform problem.
Because the size of the wavefront along which distances
are calculated is usually small compared to the size of the
entire domain, ordered propagation techniques have good best-
case running times on serial machines. In addition, Piper and
Granum [17] show that propagation can be used to calculate
the distance transform in non-convex domains. However, the
ordered nature of the algorithms and the concentration of
computation on a narrow wavefront limits the potential for
parallelism on manycore systems. Moreover, in a discrete
grid, an irregular contour shape may cause threads in the
same warp to access memory in an uncoalesced manner. Rong
and Tan [18] address the former limitation by propagating
values to points at logarithmically varying distances rather than
immediate neighbors.

Due to the propagatory and data dependent nature of both
categories of algorithms discussed above, the distance value



for a solitary point cannot be determined without first calculat-
ing the transform for the entire domain. As noted earlier, this
shortcoming is addressed by adapting the memory-intensive
approach of calculating the DT for all points en masse and
storing it in memory. While hierarchical data structures may
provide improvements over regular grids by grouping large
homogeneous regions [19], [20], their memory requirements
are dependent on the contents of the domain and degenerate
to the worst case when a large number of high frequency
features are present. Since the brute-force algorithm referred
to in the introduction allows pointwise independent calculation
of distance values, it is useful to survey other problems with
a similar construction and analyze the data structures and
approximations used to overcome the high asymptotic running
time.

If the feature points are considered as entries in a database,
finding the Voronoi site for an element q in the domain is
a nearest neighbor problem [21] and the distance between q
and its Voronoi neighbor is easily calculated to yield T (q).
In d-dimensional domains, the O(dn) search time of the
nearest neighbor, where n is the size of the database, is
commonly accelerated using either spatial data structures [22]–
[24] or, in high dimensional spaces, Locality Sensitive Hashing
[25]. However, the work of Garcia et al. [26] supports our
hypothesis that the brute-force implementation of the nearest
neighbor search on a GPU is many times faster than a CPU
algorithm that uses kd-trees. In turn, a GPU kd-tree algorithm
to handle a very large number of queries is proposed by
Gieseke et al. [27]. Their algorithm seeks to amortize the cost
of communication by waiting for enough spatially proximate
queries to accumulate in a buffer to allow memory access
in a coalesced manner. While it outperforms a brute-force
search when the number of queries is very large, the delay
in waiting for the buffer to fill and the conditional branches
involved in tree traversal make it ill-suited for cases where a
small number of queries are to be served in a time-constrained
manner. The computation of approximate nearest neighbors
has been studied by many authors [28], [29], but their work
primarily deals with higher dimensions where the performance
of spatial data structures degrades significantly.

The O(n2) pairwise interactions between elements of a set,
where n is the size of the set, makes the distance transform
an n-body simulation problem. As in the nearest neighbor
problem, a hierarchical subdivision of space with a tree is
used to accelerate the calculation [30]. While techniques for
approximating the contribution of distant tree nodes, such as
the Fast Multipole Method [31], are commonly used, they are
not relevant to our study of the distance transform which, by
definition, only considers the nearest contributing element. The
parallelization of the brute-force n-body simulation algorithm
on GPUs is studied by Nyland et al. [32].

III. CUDA IMPLEMENTATION

GPUs are massively parallel computation devices, designed
to provide high throughput by running many lightweight
threads in parallel on a large number of low-frequency

Fig. 1: CUDA GPU architecture

streaming multiprocessors (SMs). NVIDIA’s CUDA parallel
programming model [33] groups threads into blocks which
act as units of organization and work distribution. Threads
in a block execute on the same streaming multiprocessor and
may synchronize via barriers and communicate through fast,
per-block shared memory. The shared memory is interleaved
across 16 or 32 memory banks depending on the implementa-
tion. A warp refers to a subgroup of threads within a block that
runs in SIMD (Single Instruction, Multiple Data) manner on
the execution units of an SM. While the warp size is specific
to each implementation, the block size and the total number
of blocks is set by the user and usually determined by the
amount of data-parallelism on offer and the memory access
patterns of the CUDA kernel.

Calculating the brute force distance transform for a single
query point q is an example of an pleasingly parallel task that
may be decomposed into a map and reduction pattern [34]. A
map applies a function to each element of an input collection
to generate an output collection whereas a reduction combines
all inputs into a single output by applying an associative binary
operator. In the present case, the mapping function f calculates
the Euclidean distance between a single feature point and q
whereas reduction is done by applying the binary minimum
operator to the collection output by map (Figure 2).

A. Map

The serial construct for evaluating a map pattern is a for
loop over all input elements and while the individual itera-
tions, being independent, are easily parallelizable, invoking a
separate thread for each iteration is not work-efficient if the



Fig. 2: The map pattern applies the function f(si) = d(q, si)
to each feature element si ∈ S. The reduction pattern applies
the minimum operator to all elements in the intermediate list
output by map to find T (q).

mapping function does only a small amount of computation.
Instead, a common strategy is to divide the input collection
into tiles and invoke one thread per tile [32], [34], [35]:

tileId← threadId
i← 0
for i < tileSize do

idx← tileId ∗ tileSize+ i
output[idx]← f(input[idx])

end for
Knowing that a map is followed by a reduction, the two

patterns may be combined in the implementation of a single
thread to yield the results of a map and a partial, tile-wide
reduction:

tileId← threadId
D ← maximum datatype value
i← 0
for i < tileSize do

idx← tileId ∗ tileSize+ i
D ← min(f(input[idx]), D)

end for
result[tileId]← D

Since in most practical case |Q| would be a small number
larger than one, multiple threads may operate on one tile
to calculate results for multiple query points qi ∈ Q in
parallel. With this consideration in mind, our CUDA kernel is
structured so that a one-to-one ratio exists between tiles and
thread blocks. Then, the ith threads of all blocks collectively
implement a map and a partial reduction for query point qi.
If the number of query points is greater than the number of
threads per block n, then the same group of ith threads is also
responsible for qi+n, qi+2n, qi+3n, and so on. By imposing a
one-to-one mapping between tiles and thread blocks, we are
assuming that the number of tiles will always be less than,
or equal to, the maximum number of thread blocks supported
by the GPU. This is not an unreasonable assumption for most
applications: CUDA devices with compute capability greater
than 2.0 can have 655353 blocks per grid, and 1024 threads

per block, which allows more than 2× 1017 feature points.
An alternative arrangement, adopted by Nyland et al. [32] in

their n-body force calculation kernel, is to divide the collection
of query points rather than the collection of feature points into
tiles. The benefit of this approach is that the entire distance
transform computation for a single point is serialized in one
thread and no separate reduction kernel is needed. However,
as we expect the number of query points to be much smaller
than the number of feature points, a division along the former
limits the maximum number of tiles that may be created which
in turn limits the scalability of our algorithm.

As in Nyland et al. [32], effective data reuse is achieved
by synchronizing a block of threads to load a tile from global
memory into the high-speed shared memory before proceeding
with map. By storing the list of feature points as a structure of
arrays in global memory with the x-components of all points
followed by the y-components followed by the z-components,
we ensure threads in a warp access the individual components
in a coalesced manner. The tile size is chosen so that each
coalesced access is aligned to a 128-byte boundary. Finally,
when a tile of feature points has been loaded into shared
memory each thread proceeds with calculating d(qi, s) for
each s in the loaded tile. Conflicts on shared memory banks are
avoided by having all threads in a warp simultaneously access
the same 32-bit component of the feature point s, thereby,
allowing the CUDA implementation to invoke an efficient
inbuilt broadcast mechanism. One limitation of our approach
is that if the number of query points is smaller than the warp
size, a number of threads in the block will be idle after the
initial load into shared memory. While this problem can not be
completely avoided, its effects can be mitigated by choosing
a tile size equal to the warp size.

B. Reduction

The design of the reduction pattern is relatively more com-
plicated due to the distributed manner in which a single input
point is processed and the lack of any efficient synchronization
mechanism across blocks. Launching a separate reduction ker-
nel following the map operation offers the greatest parallelism,
but the large memory requirements of the intermediate data
that would be generated by map violates the premise of our
work: a 1, 342, 178 element collection of feature points (a
number that results from a 5123 discrete volume having a
modest site density of 1%) divided into tiles of 128 elements
each, requires 40MB to store the raw output of map for a
small input of only 1024 query points. More specifically, if
m is the number of query points and N the number of tiles,
the intermediate data requires O(Nm) space. As both N and
m are expected to be relatively larger numbers in real volume
data sets, it is imperative that the space complexity of the
reduction pattern be optimized.

One solution is to use the atomicMin() function offered
by CUDA implementations with compute capability 1.1 and
higher to commit or discard the output of a thread as soon as it
is generated reducing the memory requirement to O(m). The
disadvantage of using atomic operations, however, is that by



locking the data under consideration they effectively serialize
all accessing threads.

A more refined solution is to output map data in small
chunks that are immediately consumed by a reduction kernel,
never allowing the storage requirements to exceed a user-
specified limit. This is achieved by decomposing the mono-
lithic map and reduction operation into K kernels each, and
interleaving their execution across J CUDA streams (Figure
3). After all J streams have finished executing, one final
reduction combines their individual results. The values of
J and K together determine the space requirements of the
operation. Theoretically, since each kernel now operates on
N/K tiles, a value of J = 2 suffices to reduce the intermediate
storage requirement to O(J N

Km) = O(N
Km) while allowing

all kernels to execute in the same total time as the monolithic
version. In practice, however, performance may not scale
linearly with data size and larger values of J may be required
to achieve the target execution time at the cost of storage
space (Figure 4). In the extreme case when J = K and all
K map kernels run in parallel, the storage requirement of the
intermediate data becomes O(J N

Km) = O(mN) again.
The reduction kernel is designed so that a thread block

operates along one column of the intermediate data to produce
results for a single point. Since the data is stored in row-major
format to allow its decomposition among the K map kernels,
this direction of reduction necessarily involves uncoalesced
global memory access. The resulting performance penalty is
minimized by loading tiles of data into shared memory.

IV. DISTANCE TRANSFORM VARIANTS

The flexibility afforded by pointwise calculation at run-time
allows the distance transform to be adapted to the unique
requirements of each application. This is demonstrated by two
variants of the standard algorithm.

A. Approximate Distance Transform

Many application domains are tolerant of a degree of
error in results allowing accuracy to be traded for speed of
computation. As profiling results indicate reduction accounts
for a only a small percentage of the total running time of our
DT calculation, we chose to concentrate our approximation
efforts on the map kernel.

Samadi et al. [36] approximate map by using a pre-defined
value from a lookup table for the mapping function f . How-
ever, the use of a necessarily large lookup table harkens back to
the method of storing the distance values for the entire volume
in memory and violates the memory-efficient philosophy of
our work. Moreover, the simplicity of the distance mapping
function does not warrant the relatively long latency of a
memory access. The pointwise calculation of the DT allows
us to use an alternative approximation technique: perforation.
Perforation provides performance gains by restricting a loop
to a subset of critical iterations [37], [38]. In the present case,
this implies performing distance calculations for only a subset
of feature points, effectively reducing the input size. While it
is not possible to provide a bound on the maximum absolute

TABLE I: Relevant properties of the GPUs used for our
experiments

GTX TITAN Black GTX 750 Ti
Multiprocessor count 15 5
Cores/multiprocessor 192 128
Clock rate 0.98 GHz 1.267 GHz
Shared memory size 48 KB 48 KB
Global memory size 5 GB 1 GB
Global memory bandwidth 313 GB/s 80 GB/s

error, a probabilistic analysis of loop perforation by Misailovic
et al. [39] confirms that, under certain assumptions, the mean
absolute percentage error remains low for computational pat-
terns very similar to map.

It should be noted that perforation is not the same as filtering
the input using a spatial data structure such as a kd-tree, which
optimization always provides an accurate result, albeit, at the
cost of greater processing requirements. Even in situations
where a spatial data structure is used, loop perforation may
improve performance by approximating results for feature
points falling in the same leaf node.

B. Anisotropic Distance Transform

We define an anisotropic distance transform as one which
only considers feature points lying in a certain direction from
an input query point. The pointwise algorithm is conveniently
modified to calculate the anisotropic DT by incorporating an
additional dot product calculation in the map kernel to discard
all feature points lying outside a particular angle range.

V. EXPERIMENTAL SETUP

Our CUDA kernels were executed on a multi-GPU system
with an NVIDIA GeForce GTX TITAN Black and a GeForce
GTX 750 Ti. The CUDA properties of each device are
presented in Table I. For kernels executing jointly on the two
devices, the workload was not split evenly as the TITAN Black
provided more than twice the performance as the GTX 750.
Instead, a ratio of 4:1 was determined analytically from the
observed speedup differential. The baseline for our speedup
calculations was a sequential C implementation of the brute-
force distance transform run on a 16-core, 2.1 GHz AMD
Opteron 6272 with 256GB of memory, a 16KB and 64KB L1
data and instruction cache respectively, a 2048KB L2 cache
and a 6144KB L3 cache.

A CT scan of the Stanford Bunny [40] provided the volume
data for the anisotropic and approximate DT kernels. The
512 × 360 × 512 dataset stores the electron density of the
subject at discrete locations as Hounsfield units in the range
0− 4096. A threshold value of 1843 (0.45 on the grey scale)
was used to filter out the solid portion of the volume and yield
the feature points for our distance transform calculations.

When calculating the running time of each kernel, the
memory transfer latency was included only for the list of query
points since the feature points, assumed stationary, remain
resident in the GPU memory after one initial copy. The final
running-time is the average of three runs of a kernel, obtained
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Fig. 3: (a) represents the execution of monolithic map and reduction kernels. (b) shows how the memory requirement is
reduced by dividing both patterns into K = 10 smaller kernels. Each kernel now operates on N/10 tiles reducing the storage
requirement by 1/5th. This figure assumes a proportional reduction in kernel execution time with data size.

(a)

(b)

(c)

Fig. 4: (a) represents the execution of monolithic map and reduction kernels. (b) depicts a situation in which the execution
time of a kernel does not reduce proportionally with data size. (c) shows how adding an extra stream ensures timely execution
but increases the memory requirement to 3/10th of the original.

after discarding the highest and lowest value from a sample
of five runs.

By restricting all points to Z3 and using the square of the
Euclidean distance for comparisons, we were able to avoid
floating point calculations in all but the anisotropic DT kernel,
which requires normalization of vectors for angle calculation.
The requirement that all points be in Z3 is not unreasonable
as many existing DT algorithms [5], [6], [8], [10], [12],
[13], [18] operate on a two or three-dimensional raster with
integer positions. A 32-bit unsigned integer can represent the
maximum distance between two points in a volume as large
as 327683 and, hence, we need not be concerned about bit
overflow during our computations on much smaller volumes.

VI. EXPERIMENTAL RESULTS

Figure 5a shows the speedup over the serial version achieved
by the distance transform kernel on three different hardware
configurations: the GTX 750 and the GTX TITAN as stand-

alone devices, and a combination of the two in a multi-GPU
system. With three initial exceptions, it is observed that for a
given number of feature points, the speedup increases as more
processing cores become available. The exceptional cases,
where the GTX TITAN outperforms the multi-GPU, may be
accounted for by the unamortized overhead of executing a
kernel on multiple devices. For each configuration, the speedup
increases linearly with data size before settling on a constant
value as the parallelism on offer is gradually saturated by an
increasing data size. The point of inflection on each curve
represents the data size at which saturation begins and, as
expected, it is further to the right for the configuration with
greater cores (Figure 5b) suggesting the data-parallel nature
of the algorithm.

The space benefits of the algorithm are shown in Figure 6b.
Whereas the memory requirement of a single kernel grows
linearly with the number of feature points (N ), having K
smaller kernels launched in two CUDA streams, and assuming



(a) (b)

Fig. 5: The (a) speedup for three different GPU systems, and (b) a close-up of the speedup on a linear scale with the
approximated inflection point for each curve marked by a vertical line. The inflection point is further to the right for a curve
representing a device configuration with a higher number of processing cores. The number of query points is fixed at 1024.

the number of query points is fixed, implies the memory
required at any given instant is Ω(N/K). Hence, increasing
K in proportion to N allows the size of the working set to be
kept constant.

While the primary purpose of using multiple small kernels
in place of monolithic map and reduction kernels is to reduce
the memory footprint of the distance transform calculation,
it was observed that the former approach yielded significant
gains in performance as well (Figure 6a). A profile of the
CUDA code indicates the primary source of the gain as
the reduction operation. This is explained by the tree-based
structure of parallel reduction [41] in which a portion of
threads in each block remain idle after an initial computation.
By reducing the block size and, hence, the number of idle
threads, the smaller reduction kernels utilize the resources
of the GPU more efficiently than a single, large kernel. The
resulting speedup more than offsets the overhead of multiple
launch calls. It should be noted that performing reduction
implicitly through the atomic minimum operation offered by
CUDA provides the greatest speedup on a single device (Table
II) indicating that the latency of serialized memory access can
be tolerated through a high level of thread-level parallelism.
Nonetheless, as atomic memory operations are not defined
across devices in a multi-GPU system, a final reduction to
combine the results from all streams is required in any case.
Hence, multiple map kernels, each using atomic operations
to implicitly perform reduction on their share of data, offer
the best result in terms of performance, memory usage, and
scalability to multiple cores and devices.

A. Approximate Kernel

The approximate DT kernel sacrifices accuracy for perfor-
mance by considering only a subset of feature points for the
map operation. The resulting speedup is directly proportional
to the factor by which the size of the set is reduced. The mean
absolute percentage error was used as the metric for measuring
the accuracy of the approximate kernel:

TABLE II: The actual running times in milliseconds for
three variants of the distance transform algorithm on different
feature set sizes: a single monolithic map and reduction kernel,
multiple small kernels, and a single map kernel that performs
reduction implicitly through the use of atomic operations. The
number of query points is fixed at 1024.

single kernel multi-kernel atomic ops.
16384 2.85 0.31 0.24
65536 2.99 0.75 0.65
262144 6.03 2.62 2.30
16777216 291.06 159.55 141.25

E =
1

n

n∑
i=1

(di − d′i)
di

× 100

where di is the actual distance value and d′i the approximate
value for the ith query point in a set of size n.

It was observed that the results of the approximate DT
kernel are heavily dependent on the memory organization and
spatial proximity of the set of feature points. In the case of the
bunny model, where the spatial proximity of the feature points
in at least one dimension is mirrored by their organization in
memory, a speedup fractionally over 23 was achieved while
the error remained well below 10% (Figure 7a). However,
if the feature points are permuted randomly, even a small
speedup of two, obtained by discarding every other point,
comes at the cost of a very high error. Similarly high error
values are observed in the case of a uniformly distributed
random set of feature points (Figure 7b). Therefore, while the
approximate kernel allows dynamic control over the accuracy
and speedup of the distance transform calculation, its benefits
are realized when the feature points are in close proximity
and this organization is reflected in the memory layout of the
points. We have not yet sought to provide quantitative bounds
on the spatial proximity in terms of approximation error.
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Fig. 6: (a) The speedup for the multiple-kernel and the single-kernel version of the distance transform algorithm, and (b) the
corresponding size of the working set in megabytes.

(a) (b)

Fig. 7: The approximation error plotted against the speedup achieved by means of loop perforation for (a) the Stanford bunny model (b) a
uniformly distributed random set of feature points.

B. Anisotropic Kernel

In computer graphics, raymarching is a commonly used
image-order technique for rendering volumetric models: for
every pixel in the image, a ray is shot into the volume and
sampled at discrete positions along its length in front-to-back
order. The process of sampling terminates when an intersection
with the volumetric geometry is found or the bounds of the
volume are exceeded. For a cubic volume with sides of length
n, sampling each ray at unit-sized intervals yields a worst case
running time of O(n3). For this reason, it is desirable to skip
regions of empty space which are guaranteed not to produce
any ray-voxel intersections. As the distance transform provides
the maximum radius of empty space around a query point, it
is often used to determine the best interval between samples
along a ray. Figure 8b shows the effects of using the standard
distance transform to vary the ray traversal stride: while the
number of samples for most rays is close to the minimum
value of 1, as indicated by the large swathes of white in the
image, the result remains sub-optimal for rays that pass very
close to the surface without ever intersecting it. These rays
are represented by the thin dark band along the profile of
the model. Additionally, as the distance transform operates
uniformly in all directions, the stride length of rays continues

to be constrained by geometry they have gone past. The
anisotropic distance transform addresses these shortcomings
by restricting calculations to feature points lying within a
given angle θ of the ray’s direction. Figure 8c and 8d show
the number of samples when using the ADT for θ = π/5
and θ = ε, where a very small ε is used to account for the
fact that, due to floating-point roundoff errors, the dot product
between vectors pointing in the same direction may not always
be calculated as an exact 1.

Since calculating the angle by means of a dot product
requires the vectors involved be normalized, one drawback
of using the anisotropic distance transform is that it involves
relatively expensive floating-point instructions, including a
division and square-root operation. However, as long as the
relative performance degradation of the kernel is less than
the proportional reduction in the number of samples, the
anisotropic distance transform achieves a net gain in raymarch-
ing performance (Figure 9).

VII. CONCLUSION

We have presented a CUDA implementation of the distance
transform algorithm that allows pointwise computation of
results at run-time, thereby, providing the twin advantages of
space-efficiency and flexibility. Evidence of the latter property



(a) (b)

(c) (d)

Fig. 8: The number of samples when raymarching (a) with a unit-
sized stride, (b) using the standard distance transform, (c) and (d)
using an anisotropic distance transform with θ = π/5 and θ = ε,
respectively. The contrast of each image is adjusted independently so
that black represents the maximum and white the minimum number
of samples per ray.

was presented by adapting the generic algorithm to calculate
an approximate and an anisotropic distance transform. By
decomposing the brute-force DT algorithm into a map and
reduction pattern, our implementation was able to leverage the
inherent parallelism and scalability of the brute-force approach
while providing familiar targets for further optimization on
graphics processing units.
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