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a b s t r a c t

In this paper we predict outgoing mobile phone calls using machine learning and time
clusters based approaches.We analyze to which extent the calling activity of mobile phone
users is predictable. The premise is that mobile phone users exhibit temporal regularity in
their interactions with majority of their contacts. In the sociological context, most social
interactions have fairly reliable temporal regularity. If we quantify the extension of this
behavior to interactions on mobile phones we expect that pairwise interaction is not
merely a result of randomness, rather it exhibits a temporal pattern. To this end, we not
only tested our approach on an original mobile phone usage dataset from a developing
country, Pakistan, but we also analyzed the famous Reality Mining Dataset and the Nokia
Dataset (from a European country), wherewe found an equitable basis for comparisonwith
our data. Our original data consists of 783 users and more than 12,000 active dyads. Our
results show that temporal information about pairwise user interactions can predict future
calls with reasonable accuracy.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Social networks are made up of a set of social entities (people, actors, organizations etc.) and social relations (friendship,
kinship, etc.), between those entities. Social relations consists of persistent relations such as friendship and instantaneous
relations (interactions) such as talk to, joint participation in an event, extend help to, etc. Seemingly autonomous individuals
and organizations in a social network are, in fact, embedded in social relations and interactions.Massive amount of relational
event data is generated by social interactions. Such data, as proxy of human relationships is helpful in understanding and
predicting behavior of individuals such as influence, activity bursts, buying habits etc.

Mobile phones are themost commonmedium for social interactions. In America alone, there are almost 1.3 billionmobile
communication events daily [1]. Because of mobile phone’s portable nature, a communication event can take place in a
variety of situations and one can assume very little about the context of a call.
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This work is motivated by two factors: (1) User interactions on social media such as on smartphones carry important
information about the underlying social dynamics. Discovering this knowledge is challenging because of the frequency
and versatility of use of smartphones. (2) Further, the same two factors also necessitate an extremely efficient call-making
interface design.

Contributions:

1. Most of the call-logs data analyzed in the literature is from developed countries [2]. We collected an original mobile
phone usage dataset of 783 users with 229,450 communication events from an understudied population: Pakistani
mobile phone users. This is one of the potential strengths of our work.

2. We explore temporal homogeneity/non-homogeneity inmobile phone calls, in order to predict future communication
events between pairs of individuals. We perform a study of possible features in time series analysis that are useful
in call prediction. Using actual call logs we show that majority of users are not optimally served by existing calling
applications such as call logs. Further, we also test the hypothesis that, majority of caller–callee interactions display
temporal regularity through a statistical measure called autocorrelation. We then propose a machine learning call
prediction method based on temporal regularities between ego-alter pairs and perform experiments on both the
collected data as well as on the famous Reality Mining Dataset [3] to demonstrate applicability of our methods for
predicting future calls.

3. Further, we show that most ego-alter pairs call around the same time and use this observation to propose a call
prediction algorithm and compare it with algorithm proposed by Stefanis [4] on their dataset [5].

2. Related work

Temporal regularity can be observed in time variation of activity on online social networks such as YouTube, Twitter
and Slashdot, and also in frequency of edits made on Wikipedia [6–8]. Activity on twitter in various languages shows that
circadian patterns exist for tweets all around the world [9]. Temporal interactions have been used to study human behavior,
for instance, commenting behavior of Facebook users (a consequence of social selection or social influence effects) [10].
Temporal interactions have also been used to predict links in social networks [11–13].

Call log data has been shown to hold significant potential of providing insights into the underlying relational dynamics
of societies, evolution of relationships over time and, in the absence of survey data, the quantification and prediction of
social network structures [14]. Data of calling patterns has been used to infer friendships relations and uncover individual
and collective human dynamics [3,14–18]. Call-volume data has been used to explore whether the distribution of calls in an
urban population follow routine patterns or not, and whether the variation of such patterns in different parts of the city can
be explained [19]. Inspired by effective studies on calling patterns, researchers have devised several call prediction models.
In [20], authors predicted the outgoing and incoming calls on Reality Mining dataset [3] based on most recent calling data.
Out of the 94 datasets, they used a small subset of 30 users for performance evaluation. Barzaiq et al. [21] modeled the
historic call patterns of users and achieved a 35% accuracy for call prediction on synthetic data. Haddad et al. [22] discuss a
probabilistic model that uses call frequency to predict incoming and outgoing calls for each individual contact.

Recent studies of human behavior indicate that the timing of communication events is characterized by long dormant
periods interspersedwith bursts of high activity [23–25]. Barabasi [23] attributes this bursty non-Poisson character of human
behavior to a priority-based queuing process. This view is supported by Jo et al. [24] who show that burstiness remains in
mobile communication data even after circadian and weekly patterns have been removed, precluding the attribution of
periods of inactivity to nights or weekends. They conclude that burstiness results from non-homogeneity in human task
execution mechanisms. Kim et al. [26] conducted a study on a large dataset from North-American mobile phone users. The
results suggest that the caller–callee behavior cannot solely be modeled using the Poisson distribution. Based on frequency
of information exchange between the users, they classified the user-pairs into three categories characterized by the inter-
arrival times between calls made between pairs. In a related study, Cardillo et al. [27] studied human proximity patterns
in two data sets: the Reality Mining dataset and the co-location traces from INFOCOM’06. They found that proximity
patterns from the MIT data contain both weekly and daily periodicity – most probably a result of how academic activities
are scheduled at a university – while the INFOCOM’06 data showed only daily periodicity. Caridillo et al. extended this
observation to study how cooperation emerges in a human society.

A patent from Google suggests that an adaptive contact list may detect contextual information for a given mobile phone
user and may identify appropriate contact entries [28]. While studying the effects of two different UI adaptation techniques
on user performance, Tsandilas and Schraefel [29] conclude that adaptation is alwaysmore effective, evenwhen the accuracy
of prediction is low. Bentley and Chen [30] found that themajority of contacts in amodern aggregatedmobile phone book are
rarely used. Their study shows that the fivemost frequently contacted alters represent 80%of phone and text communication.
In addition, they found that a median of Q = 60% (six out of a total of N = 10 contacts) displayed in a ‘‘recent calls’’ list are
amongst the most frequently contacted. While the authors use this latter statistic to argue against the efficacy of a ‘‘recent
calls’’ list, it would be interesting to explore whether the value of Q increases for larger values of N , especially since the
authors’ results indicate an upward trend in Q as N increases from one to 10. Proponents of a ‘‘recent calls’’ list may argue
that, in practice, these lists hold more than 10 entries. Based on their results, Bentley and Chen suggest a redesign of the
content and representation of contact lists. A redesign of contacts book was proposed also in [31]. The data for Bentley and
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Chen’s study was collected from user in the United States via an Android app. Volunteer bias, especially as a survey was also
required from the users. Moreover, while representative of the general population of the US, the authors acknowledge that
communication patterns in other parts of the world may vary.

In social network settings, temporal interactions have been used to study human behavior, for instance commenting
behavior of Facebook users (a consequence of social selection or social influence effects) [10]. Temporal interactions have
also beenused to predict links in social networks [11–13,32]. Temporal regularity can be observed in time variation of activity
on online social networks such as YouTube, Twitter and Slashdot, and also in frequency of edits made on Wikipedia [6–8].
Activity on twitter in various languages shows that circadian patterns exists for tweets all around the world [9]. While
studying social network turnover, Aledavood et al. [33,34] found that individual calling and messaging behavior follows a
circadian rhythm. Their study of 24 subjects revealed that the frequency and entropy of communication displays a distinct
daily pattern that remains persistent over time. Findings on temporal patterns in Aledavood et al. [33–35] are attributed
to the diurnal cycle of human beings. Moreover, it was found that frequently called contacts are the ones most likely to
be contacted during low entropy periods. Nonetheless, the studies did not answer the question whether communication
between pairs of individuals is periodic.

Systems with time-stamped dyadic1 interactions can be modeled as temporal networks. Time stamped networks of
human communication along with proximity networks, are the largest class of systems modeled as temporal networks.
When the dependence between interaction values in the past is preserved in the future, then future interactions are
reasonably easy to predict.

Users generally make phone calls in two ways: either by selecting the callee from a contact list, or through the call
log. The former displays contacts in alphabetical order with no consideration of past calling behavior. While most mobile
phones offer the capability of selecting certain contacts as favorites, the favorites list is, however, still a static list, requiring
active intervention by the user in order to update. Call logs, on the other hand, do take past user behavior into account,
displaying called numbers in reverse chronological order. The model of user behavior assumed by call logs is, nonetheless,
highly simplistic. It supposes that the likelihood of calling a particular contact, P(c), is a monotonically decreasing function
of the time elapsed since last contact. Sociologists have, however, shown that human life is temporally organized and that
most social interactions have fairly reliable temporal regularity [36]. This implies that P(c) could be estimated to a certain
extent by understanding user calling patterns. Such an implication, correct,would allow for the design of a considerablymore
efficient calling interface thanwhat is provided by either contact lists, or chronological call logs. In numerous studies [24,26]
inhomogeneity has also been observed in human activities. [34] showed that the individual differences in the distribution
of calling remain persistent. They also suggested that frequently called contacts are the ones most likely to be contacted
during low entropy periods. Furthermore, causal events are also a key characteristic of human communication behavior. [37]
showed that communication behavior varies between pairs of users. All these characteristics make the prediction of future
interactions more challenging.

3. Exploratory data analysis

This work is a continuation of our earlier work [37] where we provided some statistics about our data. We collected data
of 783 users, with 229,450 communication events for analysis, called the Smartphone dataset. Section 3.1 summarizes our
earlier work, and Section 3.2 extends the data analysis by testing for autocorrelation, entropy and time based clusters.

Our dataset consists of 24% incoming and answered calls, 19% incoming and missed calls, and 54% of calls were outgoing
calls. Bentley and Chen [30] also reported similar statistics for their dataset of 200 users. These statistics are also comparable
with the statistics of RealityMining dataset, with slight variations in the percentage ofmissed and outgoing calls. A relatively
highpercentage ofmissed calls is a noticeable artifact of our dataset. In a low income country,missed calls are used to indicate
some signal, which is an easy way to save money.

Moreover, we observe that, only a small fraction of contacts are called frequently. Bentley [30] observed that most calls
are to 5–10 of contacts. Miritello et al. [38] we observed that individuals exhibit a finite communication capacity, which
limits the number of ties they can maintain. Similarly, [39] observed that people normally do not call 47% of their contacts
for 6 months. We empirically found a similar but more interesting pattern; every user’s call distribution very closely follow
the equation below:

ea

xb
. (1)

Here, a and b are real number that is fixed for each participant and x is the rank of the alter that varies from 1 for the alter
with the most communication events and so on till the rank of the alter with the least communication events. It is worth
noting that a and b both lie in a narrow range as the value of a varied between 0 and 7 and of b varied between 0 and 2.5. We
observed that our equation fits the data very well and we got a mean adjusted R2 of 0.89 with a standard deviation of 0.16 in
Smartphone dataset. We also checked the results on the dataset used by [4], the Nokia dataset [5]. We got mean adjusted R2

of 0.94 and the standard deviation was 0.02. The typical shape of call distribution curve for an ego2 can be seen in Fig. 1. We

1 dyad: pair of users.
2 ego is the focal actor and alters are his/her contacts.
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Fig. 1. Calls distribution for a particular ego.

Fig. 2. Distribution of calls.

find the point of bend, by equating the differential of Eq. (1), to 45o. We think, themost important contacts of an ego lie above
this point. It is interesting to note that cities and their rank also follow a similar distribution and this pattern is generally
known as the rank-size rule [40]. The number of important(top) contacts can vary from about 5 for an individual with a = 2
to about 20 for an individual whose value of a is 6. We plan to further investigate why Eq. (1) varies from one individual to
another and then apply that knowledge to improve calling experience of mobile users. The probability distribution function
(PDF) of number of calls per user are shown in Fig. 2. On average, each user made or received ≈22 calls per day. The mean
of average number of calls per user per contact is plotted as a bar chart at top right in the same figure.

3.1. Calling behavior of ego-alter pair

In this section, we discuss the difference in communication behavior of ego-alter pairs on weekends and weekdays, and
variation in conditional probability of a communication event between an ego-alter pair. We also test temporal regularity
for caller–callee interactions by applying different statistical tests.

Regarding difference in probability of calling an alter, we analyzed that, there was a higher probability of communication
between 25% ego-alter pairs on weekends. Similarly, 75% ego-alter pairs were more likely to communicate during the
weekdays in the dataset. This indicated that the difference in calling behavior is probably due to the nature of social relation
of ego-alter pairs.
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(a) Probability of a communication event be-
tween an ego-alter pair when there was another
communication event between the samepair. For
almost all pairs it is clearly greater than uncon-
ditional probability of a communication event
between that pair.

(b) The predictive power of conditional probabil-
ity increases very gradually and levels off very
quickly.

(c) Distribution of unconditional probability and
conditional probability for all ego-alter pairs for
t = 1 h.

Fig. 3. Probability of communication. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Table 1
Proportion of ego-alter pairs demonstrating significant autocorrelation at
different time periods.

rdaily rhourly r7am−8pm

Reality mining 0.55 0.89 0.65
Smartphone 0.15 0.60 0.44

Moreover, an informal user analysis (using a questionnaire) showed that 71% of respondents either always or usually
use call log to initiate a call [37]. If this trend is true in general, then the probability of a communication event between an
ego-alter pair should be significantly less than the conditional probability of a communication event between an ego-alter
pair given that therewas a communication event in the near past. Sincewe could not come upwith a reasonable definition of
near past, sowe decided to check this hypothesis by computing the conditional probability between each ego-alter pair given
that there was a communication event t hours ago, where t ∈ {1, 2, . . . , 12}. Fig. 3a clearly showed that a communication
event is much more likely if there was a communication event within the last 60 min. However, this conditional probability
does not increase significantly and levels off very quickly as we increase t , as shown in Fig. 3b. Moreover, Fig. 3c shows
histograms of unconditional as well as conditional probability when t = 1 hour) for all ego-alter pairs. The distribution for
conditional probability is normal andhencewe estimate themean and standard deviation (L(µ, σ 2)) of this distribution using
the Maximum Likelihood Estimate. We estimated µ = 0.48 and σ 2

= 0.21 as compared to the unconditional probability
where µ = 0.041 and σ 2

= 0.059. To the best of our knowledge, we interpret these results as the first empirical evidence
that existing calling interfaces such as call logs are fairly useful when users want to make a call. Nonetheless, for a certain
set of ego-alter pairs there is still room for improvement.

We also tested for the correlation between the conditional calling probability and number of communication events. Our
results suggest significant positive correlation between the two variables.

3.2. Temporal regularities in caller–callee interactions

We applied different statistical tests to analyze the temporal regularities in caller–callee interactions. The results of these
tests are summarized below.

Autocorrelation: We test the hypothesis that the majority of caller–callee interactions display temporal regularity.
Formally, we state the hypotheses as follows:

The alternative hypothesis (HA) states that the proportion of ego-alter pairs displaying periodic communication patterns
is ≥50%. This is based on the assumption that the majority, i.e., more than half, of all communication events are periodic.
The null hypothesis (H0), consequently, is that the proportion of ego-alter pairs that display periodic communication patterns
(autocorrelation) is <50% .

For each ego-alter pair in both datasets, an hourly and a daily autocorrelation measure was calculated using the Ljung
Box test where a p−value<0.05means there is autocorrelation. Table 1 lists the proportion of ego-alter pairs that displayed
autocorrelation in each of the two datasets.

Based on the results for the Reality Mining dataset, we reject the null hypothesis for both the daily (p<2.2× 10−16), and
the hourly autocorrelation measures (p < 2.2 × 10−16). This implies that more than 50% of ego-alter pairs in the Reality
Mining dataset demonstrate periodic calling behavior at the daily and daytime-hours granularity level. For the Smartphone
dataset, we fail to reject the null hypothesis for the daily autocorrelation measure (p = 1). However, we reject the null
hypothesis for the hourly (p < 2.2 × 10−16) and the daytime-hours (p < 2.2 × 10−16) autocorrelation measures.



M. Nasim et al. / Pervasive and Mobile Computing 41 (2017) 166–178 171

Fig. 4. Entropy of calls inter-arrival time.

(a) 2D plot showing a weekly and hourly calling activity in a
particular ego-alter pair.

(b) Histogram showing area fractions and their frequency.

Fig. 5. Histogram and 2D plot showing the weekly and hourly temporal patterns between caller–callee interactions.

Entropy:We also examined the entropy of inter-arrival time for all call pairs. A higher entropy would mean there is less
regularity in the calling behavior while lower entropy points periodicity or burstiness. An ego-alter pair who talk around the
same time everyday would have an entropy value of zero.

We divided the time into bins, each corresponding to one hour. We then created a vector of counts for each bin and
calculated the entropy. Fig. 4 shows that about 3000 ego-alter pairs have an entropy value of zero. About 45% of all ego-alter
pairs have an entropy value of less than 0.5. This is consistent with the results that we obtained for the autocorrelation
metric, where 44% ego-alter pairs exhibited autocorrelation in their hourly communication.

Time Clusters: We first establish the rationale behind the selection of dimensions (features) for predicting future calls.
We assume that people mostly call a particular contact at a specific time of the day, e.g. in the afternoon or in the evening
etc. To prove this assumption true, we conducted a pretest where for each ego-alter pair with at least 15 communication
events, we extracted the hour of the day and day of the week for each communication event and accordingly plotted it on a
2D space.

We then used the DBSCAN clustering algorithm to find clusters in these communications events and then computed the
convex hull around each of these clusters as shown in Fig. 5a. The intuition is that small polygon like clusters indicate that
the dyadic (ego-alter) communication has a temporal component, whereas, communication events dispersed over the plot
indicate non-homogeneity in communication. Fig. 5b, represents a histogram, showing the area fractions of different clusters
and their frequency. It is more clear from the histogram that small fractional areas aremore than large areas, which is a clear
indication of temporal regularity. In fact, it turned out that of 3162 dyads, in 3064 cases this area is less than 0.5 whereas in
98 pairs, this area is between 0.5 and 0.7. This indicates that a calling pattern exists in most of the ego-alter communication.

We analyzed the relationship between number of communication events and calling regularity in Fig. 6. For time clusters,
we computed the Kendall rank correlation on the number of communication events between an ego-alter pair and the
area fraction. Kendall rank correlation is a non-parametric test which measures the strength of dependence between two
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Fig. 6. Correlation between number of communication events and area fraction of time based clusters.

variables. We reject the null hypothesis that variables are uncorrelated at 0.05 significance level, since we obtained a p
value of 2 × 10−16. However, for autocorrelation and entropy we could not find any correlation between the number of
communication events and value of the metrics.

4. Call prediction

In the previous section, we conducted an exploratory data analysis in order to identify features for call prediction. In this
section, we propose two call prediction algorithms: one is based on machine learning techniques and the other is based on
time clusters in communication events.

4.1. Machine learning algorithm

We classified our data using the Support Vector Machines (SVM) classifier, using the implementation available in R [41].
The explanatory features used for every call are: time of the day (correct to the nearestminute), weekday (Sunday–Saturday),
Night-call (true or false) and direction of the call (incoming, outgoing or missed). We divided the data (each ego’s call log)
into training and test sets. We use 80% of the data for training the model and the remaining 20% data for predicting future
calls3 . We used a linear combination of the calling features for prediction. For every call in the test set, the classifier outputs
probabilities against each class.

We observed that a few contacts are called more often. Hence, it is reasonable to remove those contacts which are
sporadically contacted. For our experiments, we selected the mean of calling frequency as the cut off threshold. Among
various types of contacts in the contact list, only few are called most often and rest are called rarely [26,39]. In the final
analysis 10,383 caller–callee pairs are analyzed in the Smartphone dataset and 1851 pairs are analyzed in the Reality Mining
dataset.

Evaluation metric

We have used the following two evaluation criteria for performance evaluation:

1. We have compared the performance of our approach with top-kmost frequently called numbers andwith last-k calls.
In a hypothetical situation, whenever a user presses the call button or opens the calling interface, at time tn, a list of
contacts is displayed. Our classifier outputs probabilities for each class (contact) a user is likely to call at time tn. These
probabilities are computed and sorted and a list of contact numbers with the highest probabilities is displayed. We
call this list, ‘top-k recommendations’. We calculate the probability that ui is going to call xj ∈ Xi (or vice versa), given
that θj amount of time has elapsed since the last communication. We denote this probability by P(xj|θj). We observed
that when θj is small or when the last communication event was a missed call from xj (or to xj), the probability to
communicate with xj is high. For a give θj, we pick the last-k′ calls and include them in the results that we obtained
from our classifier. We then generate a final list of most likely numbers to be dialed at any given time (within the next
hour) based on the results of the classifier and last-k′ calls.

2. In the second evaluationmethod,wemeasure the proportion of calls that are predictedwithin a certain error threshold
(ϵ). For a given time, a ‘single phone number’ is predicted which the user is likely to call. We then measure how well
the number is predicted with regards to different time-deviation thresholds.

3 The Smartphone dataset contains data from April till September 2015. On average, the training set contained data approximately from April–August
2015 (about 16 weeks), used to predict calls made between August–September 2015 (about 5 weeks). On average, training the model took 48.35 ms for
each ego, on a Lenovo X1 Carbon Notebook with Intel Core i-7 CPU(2 GHz) and 8 GB of RAM.
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Table 2
Proportion of correctly predicted calls in Reality Mining dataset for various
list lengths for prediction deviation, ϵ = 1 h. Here last-k′ are the number of
last calls used in the final list.

k last-k′
= 2 last-k′

= 3

1 0.44 0.44
2 0.77 0.77
3 0.78 0.77
4 0.79 0.78
5 0.80 0.78
6 0.82 0.79
7 0.84 0.80
8 0.84 0.81
9 0.85 0.82

10 0.86 0.83

Table 3
Proportion of correctly predicted calls in Smartphone dataset for various list
lengths for prediction deviation, ϵ = 1 h. Here last-k′ are the number of last
calls used in the final list.

k last-k′
= 2 last-k′

= 3

1 0.31 0.31
2 0.73 0.73
3 0.73 0.77
4 0.74 0.78
5 0.75 0.78
6 0.77 0.79
7 0.79 0.80
8 0.80 0.81
9 0.82 0.82

10 0.83 0.83

Table 4
Average accuracy (%) with different methods.

Reality Mining Smartphone

k = 5 k = 10 k = 15 k = 5 k = 10 k = 15

top-k called numbers 60.04 70.20 77.65 45.65 63.73 74.51
last-k numbers 63.78 69.59 73.58 63.94 69.76 72.83
top-k recommendations 80.70 86.66 88.46 74.96 83.72 84.08

Predictions are made for the users who have at least 50 communication events in the dataset. Hence we analyzed 89
users in the Reality Mining Dataset and 604 users in the Smartphone dataset. Further, we wanted to improve accuracy using
fewer dimensions. For the last calls related features, we have used data pertinent to only the last two calls since there is a
trade-off between adding dimensions to the feature set and efficiency.

Top-k recommendations

From the users’ perspective, top-k recommendations should be more accurate as compared to last-k calls. We generate a
list of most likely numbers to be dialed at any given time: the ‘top-k recommendations’. We compare the accuracy of top-k
recommendations with the accuracy obtained by last-k calls. We show the performance of our approach for individual users
for varying list lengths(1 to 10). Table 4 reports the average performance of our approach along with performance achieved
by baseline methods.

In Figs. 7 and 8, x-axis represents the users (egos) in the dataset. For every user in the datasets, we report the accuracy
achieved by top-k recommendations vs. last-k calls and top-k called numbers (most frequently called contacts). The
accuracy is reported for each user in Reality Mining dataset: points in blue; and Smartphone dataset: points in red. A higher
concentration of points below the identity line indicates that top-k recommendations has better performance against the
respective method. Table 4 reports the average performance of our approach along with performance achieved by baseline
methods.

Tables 2 and 3 report the proportion of correctly predicted calls for various list lengths.

Prediction deviation

From the service providers’ perspective, accurate prediction of calls would enable them to predict users’ behavior and
predict periods of high usage which in turn would lead to better load balancing, hence, better service quality. The results
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Fig. 7. These plots show accuracy of: top-k recommendations against top-k called numbers and last-k numbers for each user. Points below the identity line
indicate that top-k recommendations has better performance against the respective baseline method. Performance is reported for: (a), (b) Reality Mining
— k = 5. (c), (d) Reality Mining — k = 10. (e), (f) Reality Mining — k = 15. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

show that a reasonable proportion of the phone calls are predictable using the proposed method. For the Reality Mining
dataset 44% of the outgoing calls were predicted below one hour error threshold. For the Smartphone dataset 31% of the
outgoing calls were predicted below one hour error threshold. Tables 2 and 3 report the proportion of correctly predicted
calls for various list lengths for prediction deviation, ϵ = 1 h.

4.2. Time clustering based call prediction algorithm

We earlier observed in Fig. 5a that calls between an ego-alter pair are concentrated in particular time regions. This
indicates that ego-alter interactions follow certain temporal patterns. It also suggests that chances of interaction between
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Fig. 8. These plots show accuracy of: top-k recommendations against top-k called numbers and last-k numbers for each user. Points below the identity
line indicate that top-k recommendations has better performance against the respective baseline method. Performance is reported for: (a), (b) Smartphone
— k = 5. (c), (d) Smartphone — k = 10. (e), (f) Smartphone — k = 15. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

particular ego-alter pairs reduces as one moves away from these regions. This intuition is the basis of our algorithm that we
discuss below:

Step 1: Identify clusters of each ego-alter pair and identify the convex hull for each cluster. We identified clusters by using
the DBSCAN algorithmwith default parameters. Since calls of each ego-alter pairs are generally divided into two or more
regions, if a dyad has fewer calls then few clusterswould be formed and therewould bemore incorrect predictions. Hence
we needed to decide on a threshold value to filter out dyadic sets with low number of calls.

Step 2: The original polygon reflects the time and day an ego-alter pair is more likely to communicate with each other.
Since human perception of time does not have strict boundaries, so we made two extended polygons to cater for the
possibility of the ego-alter pair communicating at slightly different times. The additional polygons P1 and P2 are created
around the original polygon and are of the same shape. The polygon P1 has a size that is 1.5 times the size of the original
polygon and the P2 is double the size of the original polygon. A test call that falls in the original polygon is assigned a
probability of 100%, while for P1 and P2 we assigned probabilities of 80% and 50% respectively.
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Table 5
Correct prediction rate based on time clusters.

Comm. Events Smartphone dataset Nokia dataset

Correct predictions Incorrect prediction Avg. Correct predictions Incorrect predictions Avg.

>0 20563 24413 46% 4424 1118 80%
>4 20508 13156 45% 4324 480 78%
>9 19426 6392 43% 3986 179 72%
>14 18108 2808 40% 3610 85 65%

We performed the evaluation of this algorithm by dividing the dataset into a training set consisting of 80% of the
user’s calls and a test set consisting of 20% of the user’s calls. We calculated the probability of calling each alter using
the above algorithm by using the earliest call in test set. We then selected the top probability alters to generate a top-
k recommendations where the k is 8. The prediction was termed as a success if the alter of the call is in the top-k
recommendation list, otherwise we considered it a failure. This call was then added to the training set and the same process
was repeated for all calls in the test set one by one. We also experimentally tested other sizes and probabilities and found
that the accuracy reduced at most by 4%. The accuracy of prediction is reported in Table 5.

5. Discussion

Mobile phones represent one of the most commonly used communication medium. The portable nature of the medium
means very little can be assumed about the situation in which the phone is used; a typical user makes calls in all kinds of
contexts. These two factors, frequency and versatility of use, necessitate an extremely efficient call-making interface design.

As a first step we conducted a pretest on twomobile phone datasets for determining whether users have a regular calling
pattern or not. We modeled the communication between mobile phone users as a time series data analysis problem.

We collected and analyzed call data of Pakistani users, which is an understudied population. Call-logs and SMS datasets
from understudied populations are rare [42]. Researchers have shown that different ethnic populations have distinct mobile
phone usage characteristics. In their seminal work, Blondel et al. [43] analyzed mobile traffic of 2 million users in Belgium.
They found that the twomain ethnic groups in the country, i.e.,Walloons and Flemish, can be clearly inferred from themobile
call graph. On an aggregate level our data statistics were surprisingly comparable with the ones from Reality Mining [3], and
Bentley and Chen [30]. We analyzed daily and weekly temporal patterns, showed that distribution of calls in an ego profile
follows the rank size rule, detected periodicity at dyadic level using autocorrelation and compared the resultswith the Reality
Mining dataset. Further, we empirically observed that call logs are an efficientway of dialing future calls.We also deliberated
on the rationale behind high percentage of missed calls in our dataset.

In many time series, it is plausible to expect that the recent data points are likely to have an influence on the future data
points. In order to identify whether the ego-alters communication data has a pattern, we used autocorrelation which is a
type of correlation statistic specifically for correlating the recent data point to other data points in the series. The results on
two different datasets quantitatively show that a reasonable number of ego-alter pairs exhibit autocorrelation.

The results show that more than 50% of ego-alter pairs in the reality mining dataset exhibit a daily as well as hourly
periodic calling behavior. The Reality Mining dataset was collected almost a decade ago when other means of smartphone
communication such asWhatsapp, Viber, Facetime, etc. did not exist. In the Smartphonedataset,we fail to finddaily temporal
autocorrelation. This might be an artifact arising from the shift in communication frommobile phone calls/text messages to
smartphone instantmessengers. Another tenable explanation could be the bias in the datasets. Contrary to the RealityMining
dataset that contains data from students or faculty of MIT media lab with daily activities structured around the academic
calendar, the Smartphone dataset contains data fromgeneral population of a developing country. Notwithstanding that a low
proportion of time series exhibit autocorrelation in the daily interaction of Smartphone data, there is indeed an indication
of periodic calling at finer levels.

We then predicted the calling behavior of mobile phone users (given the time based features), using a machine learning
approach and using few dimensions.We have identified the day of theweek and time as two important features, that help in
accurately predicting the next outgoing call. This is supported by the fact that human interaction behavior follows a circadian
rhythm. We have also analyzed the situations where it is more probable that the user calls a number from one of the last
called numbers.

Predictive analytics dealswith understanding the data, extracting information fromdata and using it to predict trends and
patterns. Most often the event of interest is in the future (e.g., predicting links, buying behavior, etc.), but predictive analytics
can also be applied to any type of unknown event. In predictive analytics, a feature is any important piece of information
about the data that might be useful for the prediction task. The purpose of a feature, other than being an attribute, would
be much easier to understand in the context of a problem. Although, machine learning methods are a disadvantage when
requisite data cleansing has not been done, compared to time series forecasting techniques, by careful feature selection one
may obtain reasonable results.

Similar evaluation methods for call prediction have been used in previous studies. With a few exceptions, most previous
studies used different datasets for analyzing calling behavior, therefore, a direct comparison is not equitable. [20] predicted



M. Nasim et al. / Pervasive and Mobile Computing 41 (2017) 166–178 177

the outgoing and incoming calls on Reality Mining dataset. Out of the 94 users, they selected only 30 users for experiments.
The identities of those users are not disclosed in the paper, therefore, a direct comparison with their results is not possible.
For completion, we have reported the performance of our method on 89 out of 94 users. The remaining 5 users had less
than 50 communication events. For outgoing call prediction, they also generated a list of most likely numbers to be dialed
at any given time. For the 30 random users in their experiments they achieved an accuracy of 41% if the predicted list is only
allowed one entry. If the predicted list has five entries their model correctly predicted the dialed number 70% of the time.
On the Reality Mining dataset we achieve an accuracy of 44% when the top-k list has one entry. Our results showmore than
78% accuracy on the Reality Mining dataset when the predicted list is allowed 5 entries. Table 4 shows that our approach
also performs better than the last-k calls on both the datasets.

Authors in [21] modeled the historic call patterns of users and achieved a 35% accuracy for call prediction on a synthetic
dataset. Haddad et al. [22], report the prediction accuracy for certain time-deviation thresholds on a dataset consisting of
more than seven thousand users. Their model predicted about 17% of the outgoing calls with an error below one hour.

In the previous models such as the ones proposed in [22] and [20], a baseline comparison was missing. The motivation
behind our study was to come up with a method that could better predict the next call. Hence, from the user’s point of
view we found it imperative to check the performance of the last-k calls as well. It is a reasonable expectation that a call
prediction approach should performbetter than the current approach used for smartphone call logs i.e., displaying the recent
calls in chronological order. Table 4 shows that our approach performs better than the last-k calls andmost frequently called
numbers list. Our call prediction approach outperformed the two baseline approaches i.e. predicting next call based on last-k
calls and predicting next call using the most frequently called numbers’ list. We found it very intriguing as it opens many
exciting research questions. One of them is to see whether these results can be replicated if we take a large representative
sample that can be generalized to all mobile phone users. In order to deeply understand the phone call behavior, it is
important to analyze a large call logs dataset along with other relevant information such as demographic, geographical, and
socio-economic data. Another future research possibility could be an attempt to redesign the calling interface for mobile
phones which could improve the user experience significantly. Such an interface, theoretically, would know the most likely
people one is going to call at a given time and day. In future we would like to study how users respond to an improved call
log interface.
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